Biological functional annotation of retinoic acid alpha and beta in mouse liver based on genome-wide binding.
نویسندگان
چکیده
Retinoic acid (RA) has diverse biological effects. The liver stores vitamin A, generates RA, and expresses receptors for RA. The current study examines the hepatic binding profile of two RA receptor isoforms, RARA (RARα) and RARB (RARβ), in response to RA treatment in mouse livers. Our data uncovered 35,521, and 14,968 genomic bindings for RARA and RARB, respectively. Each expressed unique and common bindings, implying their redundant and specific roles. RARB has higher RA responsiveness than RARB. RA treatment generated 18,821 novel RARB bindings but only 14,798 of RARA bindings, compared with the control group. RAR frequently bound the consensus hormone response element [HRE; (A/G)G(G/T)TCA], which often contained the motifs assigned to SP1, GABPA, and FOXA2, suggesting potential interactions between those transcriptional factors. Functional annotation coupled with principle component analysis revealed that the function of RAR target genes were motif dependent. Taken together, the cistrome of RARA and RARB revealed their extensive biological roles in the mouse liver. RAR target genes are enriched in various biological processes. The hepatic RAR genome-wide binding data can help us understand the global molecular mechanisms underlying RAR and RA-mediated gene and pathway regulation.
منابع مشابه
Antioxidant Effect of Eugenol on Cytotoxic Activities of Retinoic Acid in Liver Tissue of NMRI Mouse
Purpose: To determine the inhibitory effects of eugenol on cytotoxic activities of retinoic acid in the liver tissue of the NMRI mouse. Materials and Methods: In this study, pregnant mice were administered by a single oral dose of 100 mg/kg eugenol from 5th to 10th days of pregnancy and also a single oral dose of 60 mg/kg RA at the day 10 of gestation. Pregnant females were sacrificed at the d...
متن کاملThe Effect of Granulosa Cells Co-culture and Retinoic Acid on Maturation and Development of Immature Mouse Oocytes in Vitro
Purpose: The purpose of this study was to develop an appropriate medium for in vitro maturation (IVM) of immature mouse oocytes. Materials and Methods: Germinal vesicle of female NMRI mouse oocytes (6-8 weeks old) were collected from ovaries and cultured in maturation medium MEM-a, supplemented with: 100 mlIU/ml rFSH+7.5 IU/ml hCG+5% FCS (Control group) and 2mM all- trans retinoic acid (t-RA) ...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملRetinoic acid affects the expression of nuclear retinoic acid receptors in tissues of retinol-deficient rats.
The multitude of biological effects of the vitamin A metabolite, retinoic acid, are mediated by nuclear retinoic acid receptors (RARs), which are members of the steroid/thyroid hormone receptor superfamily. RAR-alpha, -beta, and -gamma are encoded by three genes from which multiple isoforms can be generated. Recent studies suggest that the expression of at least some RAR isoforms can be regulat...
متن کاملThe Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells
Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 307 2 شماره
صفحات -
تاریخ انتشار 2014